Печать 3d людей – Бизнес на 3D-фигурках. Как это работает?

Содержание

Человеческие органы «печатающиеся» на 3D-принтере уже сегодня

В медицине это достижение прогресса стало новым этапом, и совсем скоро грядут большие перемены в сфере протезирования, да и лечения заболеваний человеческих органов в целом.

На 3D-принтерах с 2012 года возможно распечатать протезы и импланты опорно-двигательного аппарата человека. Позвонки и межпозвоночные диски из пластика и резины уже сейчас довольно хорошо освоены и постепенно осваивается более сложный уровень — печать человеческих органов и частей тела на клеточном уровне. В клиниках США, Европы и Японии, которые впереди планеты всей по научным исследованиям в медицине, прямо сейчас экспериментируют со стволовыми клетками, дабы создавать такие части тела, которые бы стопроцентно вживлялись в человеческое тело.

Чтобы вы лучше представили себе размах прогресса, можно привести данные Oxford Performance Materials, которые говорят о 450 тысячах пациентов по всему миру и инвестициях на 2 млрд. долл. Вызывает сомнение использование стволовых клеток и собственных клеток человека, однако именно такой материал полностью исключит риск отторжения. Стволовые клетки не единственный ресурс для 3D-принтера, ученые уже работают над комбинацией пластиковых волокон и живых клеток, без которой немыслимо создание по-настоящему сложных органов. Согласитесь, одно дело распечатать протез кости, а другое — части печени или сердца.

 

Пока полностью такие сложные органы сделать не могут, а вот, к примеру, напечатанную кожу уже вовсю используют для пересадки в ожоговом центре США. Меценаты и просто бизнесмены по всему миру вкладываются в медицинскую 3D — печать, по данным исследования Grand View Research, к 2020 году объем рынка 3D-печати будет больше миллиарда долларов, сами принтеры будут стремительно дешеветь, а там рукой подать до  выпуска массовых, домашних моделей.

Какие же успехи медицина может предоставить нам на текущий момент?

 

 

Череп

В марте прошлого года хирурги заменили 75% черепа человека на пластиковый протез. Отдельные кости, вроде челюстных, «вмонтировались» в голову человека и раньше, однако таких масштабов замены еще никто не производил, тем более одноэтапно и с помощью 3D — принтера.

 

 

Позвоночник

Как уже написано выше, замена позвонков и межпозвоночных дисков дело почти освоенное, однако совсем недавно китайцы осуществили новый прорыв и сделали заменили 12-летнему мальчику позвонок с опухолью спинного мозга. Материал сделали пористым, поэтому постоянно менять позвонок не придется — он просто обрастет новой костной тканью и станет неотъемлемой частью тела.

 

 

Ухо

Бионическое ухо было создано из клеток теленка, полимерного геля и наночастиц серебра. В результате медики Принстонского университета создали настоящее «ухо будущего», которое способно воспринимать радиоволны, не улавливаемые обычным человеческим ухом. По словам ученых, они вполне могут освоить «подключение» такого уха к нейронам головного мозга, чтобы он мог воспринимать услышанное.

 

 

Зародыш

Не совсем живой орган, однако, японская компания «Fasotec» при помощи магнитно-резонансного томографа печатают в прозрачном кубе, имитирующем утробу матери, точную копию вашего будущего ребенка. Выглядит одновременно и фантастично и пугающе, но пока этот насквозь коммерческий проект нравится медикам, ведь с его помощью можно будет наблюдать за правильным развитием плода, практически держа модель ребенка в руках.

 

 

Руки

Когда уроженцу Южной Африки Ричарду Ван Есу отрубило пальцы правой руки в столярной мастерской, он нашел Айвана Оуэна из Вашингтона, который создал прототипы механических рук. Вместе они основали компанию Good Enough Tech,  разработали Robohands, и освоили печать «роборук» на 3D-принтере, существенно удешевив конечную стоимость продукта. Заручившись поддержкой компании Makerbot которая одолжила им и принтеры и ресурсы для печати, эти два энтузиаста помогли уже более чем 200 людям по всему миру.

 

 

Печень

Полный орган напечатать пока не удается, ввиду его сложности, однако уже в сейчас освоена печать ткани печени из  гепатоцитов, звездчатых клеток и клеток эпителия. Успех этот датирован 2013 годом, так что вполне возможен научный прорыв до «распечатки» целой печени уже в ближайшее время.

 

 

Нос

Корейские врачи и исследователи успешно восстановили искусственный нос, сделанный на 3D принтере шестилетнему мальчику. Нерха, мальчик из Монголии, родился без носа и ноздрей, что крайне редко встречается. Младенцы, родившиеся без носа, могут дышать должным образом, и большинство из них умирает в течение 12 месяцев. Врачи из Сеула, куда родители привезли мальчика, создали структуру поддержки для дыхательных путей, используя технологию 3д печати. В серии операций врачи восстановили нос Нерхи. Ноздри пациента были созданы с помощью его же костной ткани. Теперь он может нормально дышать и выглядит гораздо лучше.

 

 

«Печать» человеческих органов на 3D-принтере

Подписывайтесь на Квибл в Viber и Telegram, чтобы быть в курсе самых интересных событий.

quibbll.com

Быть в 3d или не быть? Как я сам себя отсканировал и распечатал на 3d-принтере / Habr

«С незапамятных времен люди стремились уменьшить то, чем пользуются» Эрлих Бахман, «Кремниевая долина», эпизод 7

Сейчас на стыке технологий 3d-сканирования и 3d-печати появилась услуга (вреде началось все в Японии в 2012) по изготовлению 3d-фигурок.

В кинематографе 3d-принтеры промелькнули в сериалах «Элементарно» (там злодей распечатал либератор, но на хабре напечатали нарисовали в фотошопе либератор раньше, чем в кино) и в «Теории большого взрыва»(свисток сделали многие, а вот про фигурки еще никто не писал).
Вдогонку к посту о том, что стоит развивать различные 3d-сервисы в России, хочу поделиться тем как происходит процесс создания 3d фигурки от и до.
Итак, я зашел в гости к ребятам на цветном бульваре и покорение 3-го измерения началось.


Сканер

Сканирование происходит при помощи 3d-сканера Artec Eva.
Сканер состоит из фотокамер и подсветки, а 3d-изображение «генерируется из фотографий»
СпецификацииВозможность считывания текстуры — есть

3D разрешение — 0,5 мм

3D степень точности — 0,1 мм

3D степень точности на расстоянии, до — 0,15% на 100 мм

Текстурное разрешение — 1,3 Мп

Цвет — 24 бит

Параллельная обработка — да

Производительность — 40 000 000 полигонов на 1GB RAM

Выходной формат OBJ, STL, WRML, ASCII, AOP, CSV, PTX

Калибровка менее 1 мин, не требует спецоборудования

Скорость сбора данных, до 288 000 точек/сек

Время экспонирования — 0,0002 сек

Частота видео съемки, до 16 кадров/сек

Рабочее расстояние 0,4 – 1 м

Источник света — лампа вспышка (не лазер)

Прочее:

Размеры, ВxДxШ — 261,5 x 158,2 x 63,7 мм

Вес — 0,85 кг

Энергопотребление — 12В, 48Вт

Минимальные системные требования
IntelCore 2 duo, 2Gb RAM, NVIDIA Quadro/GeForce 9000

ВНИМАНИЕ! заглянуть под спойлер стоит душевного здоровья:

Цена
Сканирование

Сканирование занимает примерно 10 минут.
Оно обычно происходит на поворотной платформе, но возможен вариант, что оператор бегает вокруг вас.
Сканирование выглядит примерно как куча вспышек от фотоаппарата (см. видео в конце обзора)

Редактирование занимает максимум час, если требовательный пользователь просит «уменьшить живот» или «убрать складки» в различных местах.
Программа редактирования входит в комплект сканера.

Что примечательно, обработка текстур возможна с космическим разрешением:


Оперативки требуется немало.

Принтер

Мое первое впечатление, принтер — это смесь гигантсткого струйника, хлебопечки и пылесоса.

Принтер весит 340 кг, и живет своей жизнью, порой он самостоятельно включается и проводит чистку.

Принтер требует постоянного включения в сеть.

Толщина слоя — 89-102 мкм
Скорость печати 2-4 слоя в минуту

Для масштаба — живая девушка:

Расходник — гипс, из которого печатают модель:

Печатающая головка («башка»):

Картридж с чернилами:

Подача чернил к печатающей головке:

ВНИМАНИЕ! Заглянуть под спойлер стоит душевного здоровья:

Цена
Немного видео


Печать

Программа управления и предпросмотра

Предпросмотр в нескольких проекциях.


Расчетное время печати и отображение текущего слоя печати.

Сначала на основание наносится тонкий слой гипсового порошка. После этого печатающая головка наносит специальную смолу, склеивающую гипс в нужных местах, и обычные чернила. Затем наносится следующий слой гипса и т.д.

После окончания печати излишки гипса удаляются специальным пылесосом, а из труднодоступных мест сжатым воздухом.

237(из 525) слой печати как отображает программа:

237 слой в реальности:

После того как принтер полностью напечатал модель — необходимо некоторое время для просушки.

Прошло 1,5 часа, сейчас будем «вытаскивать из печки»:

Удаляем излишки гипса методом «всасывания»:


Гипс повторно очищается\фильтруется и идет в дело.

Теперь удаляем излишки методом «обдува»:


Снизу есть 2 отверстия — из них тоже выдуваем гипс — фигурка полая внутри

Покрывают меня цианоакрилатом («закрепитель»):

Полчаса подсохнуть — и в зал славы:

Примеры работ


Запечатлеть памятный момент, памятную форму.


Можно поэкспериментировать с оформлением.


На мой взгляд, самая оригинальная фигурка.


Качество позволяет напечатать даже мелкие узоры одежды.

Вывод
Еще играя в Quake2, мне хотелось сделать скин со своим лицом.
Уже не за горами тот этап, когда наряду с фотоальбомами будут и 3d-альбомы.
Пока что фигурки вызывают вау-эффект, чем можно воспользоваться и сделать прикольный подарок.

P.S.

habr.com

3D-печать органов человека / Инвитро corporate blog / Habr

UPD: Владельцы лаборатории — Инвитро — теперь есть на Хабре. Занёс в их корпоративный блог. С вопросами можно обращаться к ним напрямую.


Это из новой лаборатории 3D-печати органов. Спереди внушительный микроскоп, дальше видно двух медицинских инженеров за AutoCAD – делают макет площадки для формирования тканевых сфероидов.

Тут недавно открылась лаборатория 3D-биопринтинга органов (проект Инвитро). Вокруг неё творится какая-то лютая феерия непонимания того, что именно делается. В общем, хоть я и не микробиолог, но мне стало интересно. Я пробился до разработчика — В.А. Миронова. Именно он изобрёл технологию печати органов и запатентовал это в США, участвовал в разработке уже трех модификаций биопринтеров, и именно он «главный по науке» в новой лаборатории в Москве:


В.А. Миронов (M.D., Ph.D., профессор с 20-летним опытом в микробиологии, в частности, на границе с IT) — в процессе полуторачасового объяснения мне сути технологии изрисовал кучу бумаги.

В двух словах о печати он рассказать не смог, потому что сначала надо понять некоторую историю вопроса. Например, почему пришлось отбросить светлую идею растить эмбриона без головы в суррогатной матери, а затем вынимать из него почку и помещать её в биораставор для ускоренного созревания.

А пока главное. Не торопитесь пить всё что горит: до новой печени ещё очень далеко. Поехали.

Эволюция методов

Итак, сначала была генная терапия: пациенту вводились соответствующие комплексы. Выделялись определённые клетки, в них вводились нужные гены, затем клетки размещались в организме человека. Не хватало инсулина – вот ген, который продуцирует его создание. Берём клеточный комплекс, модифицируем, вкалываем пациенту. Идея – отличная, правда с одним коренным недостатком: пациент вылечивается сразу, и покупать после операции ничего не надо. То есть догадайтесь, кому это было поперёк горла. Дело шло сложно, а потом один из пациентов умер – и началась характерная для США волна судебных исков и запретов, в результате чего исследования пришлось свернуть. В итоге – метод есть, но толком не оттестирован.

Следующим трендом стала клеточная терапия — использование эмбриональных стволовых клеток. Метод отличный: берутся «универсальные» клетки, которые могут быть развиты до любых необходимых пациенту. Проблема в том, что чтобы их где-то получить, нужен эмбрион. Эмбрион в процессе получения клеток, очевидно, расходуется. А это уже морально-этическая проблема, которая вызвала запрет использования таких клеток.

Дальше — тканевая инженерия – это когда вы берёте основу, кладёте на неё клетки, засовываете всё это в биореактор, на выходе получаете результат (орган), который нужен пациенту. Как протез, только живой. Вот здесь важный момент: основное отличие от протеза в том, что протез изначально из неорганики, и вряд ли когда-нибудь встроится в организм «как родной». Деревянную ногу не почешешь.

Методы тканевой инженерии бывают каркасные – когда используется выщелоченный (обесклеченный) трупный орган, который затем «заселяется» клетками пациента. Другие научные группы пробовали работать со свиными белковыми каркасами органов (доноры-люди не нужны, зато во весь рост встаёт иммуносовместимость). Каркасы бывают искусственные – из разных материалов, некоторые научные группы экспериментировали даже с сахаром.

Сам Миронов практикует бескаркасную технологию (с использованием гидрогеля в качестве основы). В его методе основа-полимер быстро деградирует и в итоге остаётся только клеточный материал. Проще говоря, сначала вставляется каркас из неограники с размещёнными клетками, а затем каркас «растворяется», и его функции берут на себя сами клетки уже подросшего органа. Для каркасов используется тот же материал, что для хирургических швов: он легко и просто деградирует в организме человека.

Тут главный вопрос – почему нужна именно 3D-печать. Чтобы это понять, давайте закопаемся ещё чуть глубже в имеющиеся методы тканевой инженерии.

Приближаемся к цели

Вообще, идея вставлять в человека заранее выращенный органический орган – отличная. Посмотрим на три варианта развития технологии:
  1. Вы берёте каркас из неорганики, засеиваете его клетками – и получаете готовый орган. Метод грубый, но работающий. Именно про него речь в большинстве тех случаев, когда говорят «мы напечатали орган». Проблема в том, что где-то нужно взять «стройматериал» — сами клетки. А если они есть, то глупо использовать какой-то внешний каркас, когда есть возможность просто собрать орган из них. Но самая болезненная проблема – неполная эндотелизация. Например, для бронхов, сделанных так, уровень — около 70%. Это значит, что поверхностные сосуды тромбогенны – вылечивая пациента, вы сразу же привносите ему новую болезнь. Дальше он должен жить на гепарине или других препаратах, либо ждать, когда образуется тромб и эмболия. А здесь уже с нетерпением ждут юристы США, которые готовы отыграть по старому сценарию. И проблема эндотелизации пока не решена. Возможный вариант – выделение клеток-предшественников костного мозга с помощью мобилизации специальными препаратами и хомингом на органе, но это пока очень далёкая от практики фантазия.
  2. Второй метод крайне оригинален и очень радует своей циничностью. Берём клетку (фибробласт) пациента, добавляем 4 гена. Кладём полученную клетку в бластоцисту (зародыша животного) и начинаем выращивать зверушку. Получается, например, свинья с человеческой поджелудочной железой – так называемая химера. Орган полностью «родной», только вся инфраструктура вокруг – кровеносные сосуды, ткани и так далее – от свиньи. А они будут отторгаться. Но ничего. Мы берём свинью, вырезаем нужный орган (свинья при этом полностью расходуется), а затем убираем с помощью специальной обработки все свиные ткани – получается как бы органический каркас органа, который можно использовать для выращивания нового. Некоторые исследователи пошли дальше и предложили следующий лафхак: давайте заменим свинью на суррогатную мать. Тут как: кроме 4 генов в клетку добавляется ещё один, отвечающий за ацефалию (отсутствие головы). Нанимается суррогатная мать, которая вынашивает нашего общего друга-эмбриона. Он развивается без головы, у ацефалов это хорошо получается. Затем – УЗИ, выяснение, что ребёнок получается неполноценный, и юридически-разрешённый аборт. Нет головы – нет человека, значит, никого мы не убивали. И тут – раз! — у нас тут появился теоретически легальный биоматериал с неразвитым органами пациента. Быстро имплантируем их! Из очевидных минусов – ну, кроме моральной стороны – организационная сложность и возможные юридические осложнения в будущем.
  3. И, наконец, есть третий метод, про который и идёт речь. Он же самый современный — трёхмерная печать органов. И именно им занимаются в новой лаборатории. Смысл такой: не нужны неорганические каркасы (клетки сами себя прекрасно держат), не нужно у кого-то брать органы. Пациент отдаёт немного своей жировой ткани (есть у каждого, в ходе экспериментов жаловались только тощие японцы), из неё методом последовательной обработки клеток получаются необходимые конструкционные элементы. Создаётся трёхмерная модель органа, конвертируется в CAD-файл, затем этот отдаётся 3D-принтеру, который умеет печатать нашими клетками и понимает в какую точку трехмерного пространства ему нужно «уложить» конкретный тип клетки. На выходе – тканевый конструкт, который надо поместить в специальную среду, пока не начались проблемы с гипоксией. В биорекаторе тканевый конструкт «созревает». Потом орган можно «трансплантировать» пациенту.

Очевидные сложные места метода следующие:
  1. Получение модели органа. Нужно где-то взять схему. Это довольно просто.
  2. Получение самих клеток. Очевидно, нам нужен материал для печати органа.
  3. Сборка принтера, чтобы клетками можно было печатать (куча проблем с образованием структуры органа).
  4. Гипоксия (отсутствие кислорода) во время создания органа.
  5. Реализации питания органа и его созревание до готовности.

Итак, 3D-принтер – это только кусок линии по фабрикации органов: его нужно обеспечить чертежом, материалом, а затем полученную модель органа из клеток ещё вырастить. Теперь давайте посмотрим по шагам, как все описанные выше задачи решаются.
Модель органа

Итак, берётся CAD-файл (сейчас — формат stl) с моделью органа. Проще всего получить модель, сделав трёхмерное сканирование самого пациента, а затем доработав данные руками. Сейчас текущие конструкты моделируются в AutoCAD.


Видно моделирование. 3D-структура как у обычной детали – только вместо пластика будут тканевые сфероиды.

Материал

Берётся материал – тканевые сфероиды, которыми будет идти запечатка. В качестве основы используется гидрогель, выполняющий функции соединительной структуры. Затем 3D-принтер печатает орган из этих вот тканевых сфероидов.


Первый опыт, подтверждающий, что из кусочков можно собрать целый орган: учёные разрезали на фрагменты сердце цыплёнка и срастили заново. Успешно.

Теперь вопрос – где взять клетки для этого материала. Лучшие – человеческие эмбиональные стволовые, из них можно сделать клетки для любой ткани последовательной дифференцировкой. Но их трогать, как мы знаем, нельзя. Зато можно брать iPS – индуцированные плюрипотентные стволовые клетки. Их можно сделать из костного мозга, пульпы зуба или обычной жировой ткани пациента – и их производят различные компании по всему миру.

Схема такая: человек обращается в клинику, делает липосакцию, жировая ткань замораживается и кладётся в репозиторий. При необходимости – достаётся, из неё делаются нужные клетки (ATDSC, один такой комплекс есть в России) и затем дифференцируются по назначению. Например, из фибробластов можно сделать iPS, из них – почечный эпителий, а дальше – функциональный эпителий.

Машины для автоматического получения таких клеток производятся General Electric, например.


Центрифуга. Первый этап отделения материала из жировой ткани.

Из этих клеток формируются шарики в специальных микроуглублениях на твёрдом материале. В углубление на молде помещается клеточная суспензия, затем клетки сращиваются, и образуется шарик. Точнее – не очень ровный сфероид.

Обработка конструкционных блоков

Следующая проблема – клетки в картдидже горят желанием срастись. Тканевые сфероиды должны быть изолированы друг от друга, иначе они начнут срастаться раньше срока. Их нужно инкапсулировать, и для этого используется гиалуроновая кислота, получаемая из сыворотки крови. Её надо совсем мало – просто один тончайший слой. Она также быстро «уходит» после печати.
Печать

Головка 3D-принтера имеет три экструдера: две форсунки с гелем и устройство, выдающее тканевые сфероиды. В первой форсунке с гелем – тромбин, во второй – фибриноген. Оба геля относительно стабильны, пока не соприкасаются. Но когда белок фибриноген расщепляется тромбином, образуется фибрин-мономер. Именно им как бетоном скрепляются тканевые сфероиды. При глубине слоя, соответствующей диаметру сфероида, можно последовательно наносить материал ряд за рядом – сделали слой, закрепили, перешли к следующему. Затем фибрин легко деградирует в среде и вымывается при перфузии, и остаётся только нужная ткань.


Вот так будут печататься трубочки

Принтер печатает слоями по 250 микрометров: это баланс между оптимальным размером блока и риском гипоксии в сфероиде. За полчаса можно напечатать тканево-инженерную конструкцию 10х10 сантиметров – но это ещё не орган, а тканево-инженерная конструкция, «сопля» на жаргоне. Чтобы конструкция стала органом, она должна жить, иметь чёткую форму, нести функции.


Микроскоп с огромным фокусным расстоянием смотрит на стеклянный куб с 3D-принтером.


Печатающая головка. Пока идут тесты комплекса на пластике. Принтер сейчас печатает расходный материал, пластиковые приспособления-молды для создания сфероидов. Параллельно идут тесты стерильного бокса для 3D-принтера при работающем электронном устройстве.

Постобработка

Главный вопрос – это то, что клеткам, вообще-то, не плохо бы иметь доступ к кислороду и питательным веществам. Иначе они начинают, грубо говоря, гнить. Когда орган тонкий, проблем нет, но уже с пары миллиметров это важно. Правда, у слона, например, есть хрящи до 5 миллиметров – но они вмонтированы там, где создаётся большое давление из-за массы остального слона. Так вот, чтобы напечатанный орган не испортился в процессе фабрикации, нужна микроциркуляция. Это делается печатью настоящих сосудов и капилляров, плюс с помощью тончайших перфузионных отверстий, проделываемых неорганическими инструментами (грубо говоря, конструкционные блоки поступают на полимерном «шампуре», который потом вынимается).


Уплотнение ткани


Тканевое объединение нескольких типов клеток без смешения

Будущий орган помещается в биореактор. Это, сильно упрощая, банка с контролируемой средой, в которой на входы и выходы органа подаются нужные вещества, плюс обеспечивается ускоренное созревание за счёт воздействия факторами роста.

Вот что интересно — архитектура органа обычно похожа на привычный по ООП инкапсулированный объект – артерия входа, вена выхода – и куча функций внутри. Предполагается, что биореактор позволит обеспечивать нужный вход и выход. Но это пока теория, собрать ещё не удалось ни одного. Но проект отработан до стадии «можно собирать прототип».


Висело в лаборатории. Видно первый этап: получение базовых элементов, второй – 3D-принтер с тремя экструдерами, третий – уход от прототипа к промышленной модели, затем испытания на животных, затем выход на IPO и установка людям.


Линия целиком — клеточный сортер, фабрикатор тканевых сфероидов, принтер, перфузионная установка

Рынки

Теперь кому всё это нужно на стадии, пока нет самих органов.

Первые же крупные клиенты – военные. Собственно, как не трудно догадаться, DARPA ходит в гости ко всем учёным, занимающимся такой темой. У них два применения – испытательное (много что нельзя испытывать на живых людях, а хочется – отдельный орган был бы очень кстати) и лечебное. Например, бойцу демократии отрывает руку, а до госпиталя ползти сутки. Хорошо бы закрыть дыру, снять боль, дать ему возможность стрелять ещё 5 часов, а затем на своих двоих прийти к медсестре. В теории возможны либо роботы, которые соберут всё это по месту, либо заплатки из человеческих тканей, которые уже сейчас всерьёз думают ставить на ожоги.

Второй клиент – фарма. Там лекарства испытываются по 15 лет до выхода на рынок. Как шутят американцы, проще убить коллегу, чем мышку. На мышку надо собрать кучу документов в руку толщиной. Сертифицированные мышки получаются в результате очень дорогие. Да и результаты по зверьку отличаются от человеческих. Существующие модели испытаний на плоских клеточных моделях и на животных не достаточно ревалентны. В лаборатории мне сказали, что примерно 7% новых лекарственных формул в мире не доходят до клинических испытаний из-за нефротоксичности, выявленной на стадии преклинических испытаний. Из тех, что дошли, около трети имеют проблемы с токсичностью. Именно поэтому, кстати, одна из первых задач — проверка функциональности нефронов, сделанных в лаборатории. Ткани и органы с принтера будут существенно ускорять разработку лекарств, а это огромные деньги.

Третий клиент – госпитали. Рынок трансплантации почек с США, например – 25 миллиардов долларов. Сначала предполагается просто продавать 3D-принтеры в больницы, чтобы пациент мог получить что нужно. Следующий (теоретический) шаг – создание комплексов для печати органов прямо внутри пациента. Дело в том, что миниатюрную печатающую головку внутрь больного доставить часто намного проще, чем крупный орган. Но это ещё пока мечты, хотя нужные роботы существуют.


Вот примерно так оно должно работать

Да, здесь есть ещё одна важная тема: параллельно ведутся исследования по управлению тканевыми сфероидами за счёт магнитной левитации. Первые опыты были простые – в ткань засовывались железные «наноопилки», и сфероиды действительно летали как надо в магнином поле и доставлялись по месту. Но страдала дифференцировка. С опилками сложно выполнять нужные функции. Следующий логичный шаг – металл в инкапсулирующем слое. Но ещё круче – микроскафолды с магнитными частицами. Эти скафолды охватывают сфероид и ещё могут выступать в роли каркаса-соединителя, встающего сразу по месту, что даёт огромный простор для оперативной печати органов.

Ссылки

— Компания на Сколково
— Про российскую конферению по регенеративной медицине, которую делала эта команда
Пачка ссылок на английском, которая рассказывает о постепенном прогрессе:


Куча бумаги, которую Миронов изрисовал за время рассказа. Почерк как у врача 🙂

Важные факты

  • Ни один орган, напечатанный на 3D-принтере, ещё не был имплантирован человеку. Зато есть около десятка разных случаев успешной «установки» таких органов в животных.
  • Миронов собрал уже три действующих 3D-биопринтера: 2 в Канаде, одни у себя в Бразилии. Новый в России должен стать лучше всех существующих.
  • При сращивании сфероидов происходит компактизация ткани – например, почку придётся печатать раза в три больше, чем она будет внутри пациента – уже на последней стадии фабрикации она станет нормального размера.
  • Сейчас научились делать базовые вещи, например, трубочки из разных типов ткани. После проверки функциональности клеток можно делать сложные конструкции. Например, из трубочек легко получается нефрон, а из множества нефронов – почка.
  • Роботы нужны. В бронхах, например, 10 порядков ветвления – собирать это руками несколько утомительно, да и пациент не готов ждать тысячи лет. Будущее технологии быстрой печати – микрофлюидные экструдеры, которые делают до 10 тысяч капель в секунду. Вместе с быстрым роботом они могут дать отличный эффект.
  • Напечатанные органы сразу атромбогенные – например, сосуды сразу же выстланы изнутри эндотелием. Это очень крутое преимущество: пациент не рискует, и ему не придётся всю жизнь сидеть на таблетках.
  • Чекпоинты на близлежащую перспективу: патенты в РФ, полностью собранный принтер, статья в Science или Nature. Уже собрана международная команда ученых, в составе которой: доктор биологических наук, кандидат биологических наук, кандидат медицинских наук, доктор Ph.D.
  • Первая почка будет в 2030-м году. Стоить она сначала будет как космос, но с масштабированием технологии – в разы дешевле, чем чужие органы на пересадку сейчас.

habr.com

3D-печать в кино: 10 реальных примеров использования

Когда говорят о высоких технологиях в кино, обычно имеют в виду компьютерную графику – но не будем забывать и о 3D-печати. Сегодня она широко применяется в кинематографии и облегчает работу декораторов и художников по костюмам. Нередко технологии используются вместе: актеры и операторы работают с 3D-печатными предметами, а цифровые художники потом «дорисовывают» их.

Если вы часто ходите в кино и смотрите сериалы, то наверняка тоже видели на экране костюмы и вещи, созданные с помощью 3D-печати. Но смогли ли вы определить это? Читайте обзор Robohunter и проверьте себя!

 

«Звездные войны»

Первые части легендарной франшизы вышли еще до изобретения 3D-принтера. Но в эпизоде VII «Пробуждение силы», вышедшем в 2015 году, авторы взяли от технологии максимум. Так, дроид C3PO, которого сыграл тот же исполнитель, что и в оригинальной трилогии – Энтони Дэниелс, сделан уже не их металла, а из пластика. Это облегчило работу гримерам: если в старый вариант Дэниелса облачали не меньше двух часов, то версия 2015 года надевается за 20 минут. К сожалению пожилого актера, вес костюма не стал меньше и составил все те же 13 килограммов.

С помощью объемной печати в последних эпизодах также сделали шлемы «штурмовиков», детали интерьера космических кораблей и даже персонажа целиком – ВВ-8, маленького круглого дроида.

 

Смотрите также: «Почувствуй Силу! «Звездные войны»: гид по эпизодам и интересные факты»

 

 

«Очень странные дела»

В сериале от Netflix с ламповой атмосферой восьмидесятых 3D-печать использовали для воссоздания потусторонних существ. Демогоргоны, чудовища из другого мира, были сначала нарисованы в виде компьютерных моделей, а потом напечатаны на 3D-принтере. Как рассказали художники проекта, работа с объемными фигурками помогла им быстро прийти к единому мнению о том, как должны выглядеть эти зловещие существа. При съемках пластиковые монстры тоже использовались: в некоторых сценах задействованы 3D-печатные фигуры, которые потом мастера по спецэффектам «дорисовали» с помощью компьютерной графики. Такая техника съемки позволила сделать демогоргонов удивительно живыми и детализированными.

 

 

«Мир Юрского периода»

Чаще 3D-печать используется для создания не персонажей, а предметов. Так, в фильме «Мир Юрского периода», вышедшем в 2015 году, на объемном принтере напечатали артефакты доисторической эпохи. Декораторы взяли за основу реальные окаменелости, отсканировав их на 3D-сканере. А готовые печатные копии доработали с помощью гипса, грунта и красок.

 

Смотрите также: «Роботы KUKA создают скульптуры для кинофильмов»

 

«Железный человек»

Начиная со второго фильма культовой франшизы, вышедшей в 2010 году, костюм Железного человека изготавливают методом 3D-печати. Как поясняют художники по костюмам, создать красивый образ для фильма – только половина дела: не менее важно, чтобы костюм не сковывал движения актера и не причинял ему дискомфорт. Ведь самочувствие исполнителя влияет на его игру. Если вы снимаете экшен и должны сделать для главного персонажа полный «доспех», задача усложняется в несколько раз. Чтобы Роберту Дауни-младшему было удобно носить свой супергеройский костюм, тело актера отсканировали, а части костюма печатали на 3D-принтере. Это помогло добиться идеального прилегания деталей к телу: они не выглядят громоздкими и в то же время оставляют свободу движений. Конечно, детали доспеха в кадре вовсе не похожи на пластиковые, но здесь заслуга декораторов и бутафоров.

 

 

«Черная Пантера»

В другом супергеройском фильме, «Черная Пантера», костюмеры тоже прибегли к помощи 3D-печати. Но изготавливали не футуристичные доспехи, а наоборот: аксессуары традиционного африканского костюма. Королева Рамонда на экране носит головные уборы и болеро, созданные с помощью 3D-принтера. Изготовление таких сложных ажурных конструкций с помощью традиционных техник (резьба или плетение кружева) потребовало бы гораздо больше времени и труда.

 

Королева Рамонда (справа)

«Тор: Рагнарёк»

Еще один известный женский персонаж, который появился в кадре в 3D-печатном костюме – Хела из фильма «Тор: Рагнарёк». Злодейка предстает перед Тором в головном уборе с рогами, который изготовлен на трехмерном принтере. Как пояснили создатели картины, рога можно было бы нарисовать и с помощью компьютерной графики, но «осязаемый» костюм позволил актрисе более уверенно держаться в кадре и двигаться естественнее.

 

 

«Стражи Галактики»

Фэнтезийный костюм Кората Преследователя в «Стражах Галактики» тоже был создан с помощью объемной печати. Он не имеет ничего общего с одеянием Кората в комиксах, но выглядит впечатляюще. А еще художники по костюмам использовали 3D-принтер для создания шлема Темного Лорда. При разработке 3D-печатных частей доспехов дизайнеры могут уменьшить их вес по сравнению с традиционными аналогами, и это существенно облегчает актерам работу на площадке. Ведь съемки одного эпизода длятся до нескольких часов.

 

 

«Цель номер один»

Иногда главная цель использования 3D-печати в фильме – снизить издержки. Так, в боевике «Цель номер один» для героя сделали муляж прибора ночного видения. Прототипом стало настоящее устройство, которое есть на вооружении у американских солдат. Покупка оригинального устройства для съемок не вписывалась в бюджет фильма, поэтому в кадре герой смотрит в реалистичную пластиковую копию ПНВ.

 

 

«007: Координаты «Скайфолл»

Иногда экономить приходится даже режиссерам блокбастеров. Сэм Мендес, режиссер двадцать третьей картины про Бонда «007: Координаты «Скайфолл», изящно решил проблему со взрывом легендарного автомобиля – Aston Martin DB5. Такая машина сегодня стоит свыше $400 000, и купить отдельный экземпляр только для сцены взрыва было бы неоправданно дорого. Поэтому машину оцифровали 3D-сканером и сделали модель в масштабе 1:3 из 18 напечатанных деталей. Если вы видели этот фильм, то согласитесь: на эффектность взрыва это никак не повлияло.

 

 

«Призрак в доспехах»

В нашумевшем фильме о противостоянии андроидов и людей на 3D-принтере создавали роботов-гейш. Особенно впечатляют головы персонажей. Пластиковые детали прошли сложную финишную обработку, чтобы выглядеть разными материалами: пластмассой, резиной, металлом. Но все же цифровое моделирование и 3D-печать сэкономили немало времени при создании робоармии.

 

Смотрите также: Как создавались спецэффекты для фильма «Призрак в доспехах»

robo-hunter.com

50 крутых вещей для печати на 3D-принтере / Top 3D Shop corporate blog / Habr

Нет идей для 3D-печати? Надоели никчемные безделушки? Перед вами список 50 крутых действительно полезных вещей для 3D-печати.

Как и мы, вы просто в восторге от возможностей 3D-печати. Но, к сожалению, горизонт завален безделушками, финтифлюшками и прочими ненужными штуками. Нам грозит опасность быть погребенными под кучей никому не нужного хлама.

Сбросьте с себя оковы посредственности! Давайте создавать действительно полезные вещи! Перед вами список крутых вещей, которые можно изготовить на 3D-принтере прямо сейчас. Докажите своим близким и любимым, что эта чудесная технология может найти ежедневное и практическое применение. 

Нет доступа к 3D-принтеру? Не беда. Просто загрузите файлы на нашу систему сравнения цен 3D-печати и выберите самую выгодную стоимость, ОНЛАЙН!

Нет 3D-принтера для печати этих замечательных вещей? Тогда приходите к <a href=«top3dshop.ru]нам, наши специалисты подберут вам лучшее оборудование!

А теперь подробнее о полезных вещах.

Крутая вещь для 3D печати №1: пластмассовый молоток

THWACK это способный к тяжелый работе пластмассовый молоток общего назначения. Отлично подходит для забивания гвоздей в доме, плотно закрывающихся объектов, «ударной» аранжировки в джаз-бэнде и запугивания незнакомцев. 

Скачать с ThingiVerse

Крутая вещь для 3D печати №2: полка для розетки

Приставьте к вашей розетке полочку для подпорки телефона во время зарядки. В полке имеется наклонная выемка, что позволяется держать ваш смартфон или планшет в вертикальном положении. 

Скачать с ThingiVerse

Крутая вещь для 3D печати №3: мыльница

Элегантная мыльница для ванной комнаты с двумя моющимися отделениями. По желанию вы можете изменить узор внутреннего поддона. 

Скачать с ThingiVerse

Крутая вещь для 3D печати №4: ручки с ярлычками для тумбочки

Искусство хранения не обязательно должно быть скучным. Hobb Knob – это маленькая ручка с ярлычком для описания вещей, хранимых в ящиках. Теперь вы никогда не потеряете свои носки! 

Скачать с ThingiVerse

Крутая вещь для 3D печати №5: подстаканники с геометрическими узорами

Когда дело касается горячих напитков, неизбежный риск представляют круги от кружки. Всё принимает куда более серьезные обороты, если в доме водится кофе-зависимый обитатель. Эти подстаканники доступные в трех видах дизайна помогут избежать неприглядных пятен. 

Скачать с Pinshape

Крутая вещь для 3D печати №6: лампа на шарнирах

Эта модульная лампа на шарнирах состоит из 6 основных элементов: основа, корпус и верхняя часть со светодиодами. Чтобы сделать лампу более высокой, вы можете добавить необходимое количество элементов. 

Скачать с MyMiniFactory

Крутая вещь для 3D печати №7: открывалка для бутылок одной рукой

Эта открывался для бутылок в форме бумеранга пригодится людям, испытывающим трудности при выполнении действий, требующих приложения силы, например при открывании пластиковой бутылки. Распечатайте ее и подарите своей бабушке. Она по достоинству оценит этот жест. 

Скачать с ThingiVerse

Крутая вещь для 3D печати №8: насадка душа

Купание под водопадом в вашем списке вещей, которые стоит сделать перед смертью? Следующая лучшая вещь — это 3D-напечатанная насадка душа (вероятно). 

Скачать с ThingiVerse

Крутая вещь для 3D печати №9: секретная полочка  

Спрячьте ценные документы и заначку от любопытных взглядов на этой потайной полке. 

Скачать с ThingiVerse

Крутая вещь для 3D печати №10: ручка для банки

Усовершенствуйте пустые банки из-под варенья с помощью напечатанной ручки. Что может быть проще? 

Скачать с ThingiVerse

Крутая вещь для 3D печати №11: пластмассовый гаечный ключ

Полноценный пластмассовый гаечный ключ общего назначения. Собственно для завинчивания и вывинчивания по дому. 

Скачать с ThingiVerse

Крутая вещь для 3D печати №12: визитница

 «Какой нежный желтоватый оттенок, и толщина подобрана со вкусом, о боже, даже водяные знаки.» У вас есть такая визитка? Найдите ей пару в виде этой визитницы, печатаемой целиком (да, уже с откидной крышкой). Инструкции по добавлению индивидуального логотипа включены. 
Скачать с ThingiVerse

Крутая вещь для 3D печати №13: держатель туалетной бумаги в форме инопланетного захватчика

Сделайте вашу ванную комнату ярче с функциональной распечатанной моделью классического инопланетного захватчика… кхм, держащего вашу туалетную бумагу. 

Скачать с ThingiVerse

Крутая вещь для 3D печати №14: подъёмная платформа

Перед вами полностью собранная подъёмная платформа. Печатается целиком. Нет нужды возиться с кучей деталей. Регулируемая высота может использоваться для подъема или поддержки объекта приемлемого веса. 

Скачать с ThingiVerse

Крутая вещь для 3D печати №15: автопоилка для растений

Комнатные растения стали жертвой невнимания? ЗАБУДЬТЕ ОБ ЭТОМ. Распечатайте этот простейшую автоматическую поилку для растений, и ваша совесть останется чистой. 

Скачать с ThingiVerse

Крутая вещь для 3D печати №16: держатель для наушников-капелек

Мы тратим немало денег на покупку наушников на ходу, но недостаточно защищаем их при использовании. Ничего не опасаясь, спрячьте наушники в этом 3D напечатанном держателе. 

Скачать с ThingiVerse

Крутая вещь для 3D печати №17: ручка для пакета  

Нам всем знакома эта ситуация. Тащишься домой из супермаркета, нагруженный пакетами с продуктами. Сила гравитации заставляет пластик врезаться в ваши ладони, я прав? ХВАТИТ. Напечатайте эти ручки для пакетов и навсегда забудьте о натертых ладонях! 

Скачать с ThingiVerse

Крутая вещь для 3D печати №18: подставка для планшета  

Есть случаи, когда при работе со смарт-устройством необходимо освободить руки, например, при просмотре ТВ шоу или рецептов при готовке,. Эта простая подставка для поддержки планшетов с диагональю 7 дюймов и больше, годится как для портретного, так и для альбомного режимов. 

Скачать с Pinshape

Крутая вещь для 3D печати №19: автопоилка для растений №2

Еще одно хитрое изобретение для садоводческого искусства. Оно особенно подходит для кухонных растений. В следующий раз, когда вы купите свежую зелень для готовки, пересадите ее в это аккуратно устройство, и она останется свежей в течение всей недели. 

Скачать с ThingiVerse

Крутая вещь для 3D печати №20: дверной упор

Надоело, что дома или в офисе все хлопают дверьми? Тогда вам нужен БЕСКОМПРОМИССНЫЙ дверной упор. Легкий вес, безопасен для детей, предназначен для простой установки и простого изготовления на FDM 3D принтере. Создатель упора также утверждает, что устройство может использоваться для отражения зомби-атак, однако эта версия не была проверена. 

Скачать с ThingiVerse

Крутая вещь для 3D печати №21: скребок для лобового стекла

Если хотите легко и быстро избавиться от снега и льда на лобовом стекле вашей машины с помощью этого удобного скребка. Печатается без опоры, на конце имеется отверстие для шнурка.

Скачать с ThingiVerse

Крутая вещь для 3D печати №22: регулятор расхода воды в поливочном шланге

Эта специальная насадка регулирует расход воды в поливочном шланге, около 2 л в минуту. Отлично, если в разгар лета у вас установлены ограничения на расход воды. 

Скачать с ThingiVerse

Крутая вещь для 3D печати №23: модульная полка для вина  

Неважно, будь вы новичком или ценителем в мире вина, отличным решением для хранения благородного напитка станет эта модульная полка для винных бутылок WIRA. В соответствии с вашей коллекцией ее можно расширить (или сузить), печатая лишь необходимое количество модулей. 

Скачать с 3DShook

Крутая вещь для 3D печати №24: свисток для защиты  

Этот свисток оригинального дизайна легко сделать и носить с собой. Износостойкий и очень громкий. Насколько громкий? Как насчет 118 децибел? Этого более чем достаточно, чтобы люди услышали о вашей чрезвычайной ситуации.
Скачать с ThingiVerse

Крутая вещь для 3D печати №25: Держатель для наушников Apple

Скачать с ThingiVerse

Крутая вещь для 3D печати №26: Держатель зонта для инвалидного кресла

Скачать с MyMiniFactory

Крутая вещь для 3D печати №28: Защита для диска

Скачать с MyMiniFactory

Крутая вещь для 3D печати №29: Форма для снежков

Скачать с ThingiVerse

Крутая вещь для 3D печати №30: Защита для винной бутылки

Скачать с MyMiniFactory

Крутая вещь для 3D печати №31: Карманная пепельница

Скачать с MyMiniFactory

Крутая вещь для 3D печати №32: Кольцо-держатель для стакана 

Скачать с MyMiniFactory

Крутая вещь для 3D печати №33: Стенд для пульта Apple

Скачать с MyMiniFactory

Крутая вещь для 3D печати №34: Держатель для ключей

Скачать с MyMiniFactory

Крутая вещь для 3D печати №35: Держатель столовых приборов для людей с ограниченными возможностями

Скачать с MyMiniFactory

Крутая вещь для 3D печати №36: Крышка для винной бутылки

Скачать с MyMiniFactory

Крутая вещь для 3D печати №37: Держатель для бумажного стаканчика

Скачать с MyMiniFactory

Крутая вещь для 3D печати №38: Кейс для лезвия

Скачать с MyMiniFactory

Крутая вещь для 3D печати №39: Держатель для детской бутылочки


Скачать с MyMiniFactory

Крутая вещь для 3D печати №40: Вешалка для полотенец

Скачать с MyMiniFactory

Крутая вещь для 3D печати №41: Держатель для стакана

Скачать с MyMiniFactory

Крутая вещь для 3D печати №42: Держатель для телефона в душе

Скачать с MyMiniFactory

Крутая вещь для 3D печати №43: Держатель для пивных стаканов

Скачать с MyMiniFactory

Крутая вещь для 3D печати №44: Подставка для MacBook Pro

Скачать с MyMiniFactory

Крутая вещь для 3D печати №45: Защита для SD-карт

Скачать с MyMiniFactory

Крутая вещь для 3D печати №46: Корпус для батареек

Скачать с MyMiniFactory

Крутая вещь для 3D печати №47: Держатель для мороженых рожков

Скачать с MyMiniFactory

Крутая вещь для 3D печати №48:  Душевой набор

Скачать с MyMiniFactory

Крутая вещь для 3D печати №49:  Яичный сепаратор

Скачать с MyMiniFactory

Крутая вещь для 3D печати №50:  Катушка для кабеля

Скачать с MyMiniFactory

Хотите больше интересных новостей из мира 3D-технологий?

Подписывайтесь на нас в соц. сети facebook:

habr.com

Человеческие органы «печатающиеся» на 3D-принтере уже сегодня

В медицине это достижение прогресса стало новым этапом, и совсем скоро грядут большие перемены в сфере протезирования, да и лечения заболеваний человеческих органов в целом.

На 3D-принтерах с 2012 года возможно распечатать протезы и импланты опорно-двигательного аппарата человека. Позвонки и межпозвоночные диски из пластика и резины уже сейчас довольно хорошо освоены и постепенно осваивается более сложный уровень — печать человеческих органов и частей тела на клеточном уровне. В клиниках США, Европы и Японии, которые впереди планеты всей по научным исследованиям в медицине, прямо сейчас экспериментируют со стволовыми клетками, дабы создавать такие части тела, которые бы стопроцентно вживлялись в человеческое тело.

Чтобы вы лучше представили себе размах прогресса, можно привести данные Oxford Performance Materials, которые говорят о 450 тысячах пациентов по всему миру и инвестициях на 2 млрд. долл. Вызывает сомнение использование стволовых клеток и собственных клеток человека, однако именно такой материал полностью исключит риск отторжения. Стволовые клетки не единственный ресурс для 3D-принтера, ученые уже работают над комбинацией пластиковых волокон и живых клеток, без которой немыслимо создание по-настоящему сложных органов. Согласитесь, одно дело распечатать протез кости, а другое — части печени или сердца.

 

Пока полностью такие сложные органы сделать не могут, а вот, к примеру, напечатанную кожу уже вовсю используют для пересадки в ожоговом центре США. Меценаты и просто бизнесмены по всему миру вкладываются в медицинскую 3D — печать, по данным исследования Grand View Research, к 2020 году объем рынка 3D-печати будет больше миллиарда долларов, сами принтеры будут стремительно дешеветь, а там рукой подать до  выпуска массовых, домашних моделей.

Какие же успехи медицина может предоставить нам на текущий момент?

 

 

Череп

В марте прошлого года хирурги заменили 75% черепа человека на пластиковый протез. Отдельные кости, вроде челюстных, «вмонтировались» в голову человека и раньше, однако таких масштабов замены еще никто не производил, тем более одноэтапно и с помощью 3D — принтера.

 

 

Позвоночник

Как уже написано выше, замена позвонков и межпозвоночных дисков дело почти освоенное, однако совсем недавно китайцы осуществили новый прорыв и сделали заменили 12-летнему мальчику позвонок с опухолью спинного мозга. Материал сделали пористым, поэтому постоянно менять позвонок не придется — он просто обрастет новой костной тканью и станет неотъемлемой частью тела.

 

 

Ухо

Бионическое ухо было создано из клеток теленка, полимерного геля и наночастиц серебра. В результате медики Принстонского университета создали настоящее «ухо будущего», которое способно воспринимать радиоволны, не улавливаемые обычным человеческим ухом. По словам ученых, они вполне могут освоить «подключение» такого уха к нейронам головного мозга, чтобы он мог воспринимать услышанное.

 

 

Зародыш

Не совсем живой орган, однако, японская компания «Fasotec» при помощи магнитно-резонансного томографа печатают в прозрачном кубе, имитирующем утробу матери, точную копию вашего будущего ребенка. Выглядит одновременно и фантастично и пугающе, но пока этот насквозь коммерческий проект нравится медикам, ведь с его помощью можно будет наблюдать за правильным развитием плода, практически держа модель ребенка в руках.

 

 

Руки

Когда уроженцу Южной Африки Ричарду Ван Есу отрубило пальцы правой руки в столярной мастерской, он нашел Айвана Оуэна из Вашингтона, который создал прототипы механических рук. Вместе они основали компанию Good Enough Tech,  разработали Robohands, и освоили печать «роборук» на 3D-принтере, существенно удешевив конечную стоимость продукта. Заручившись поддержкой компании Makerbot которая одолжила им и принтеры и ресурсы для печати, эти два энтузиаста помогли уже более чем 200 людям по всему миру.

 

 

Печень

Полный орган напечатать пока не удается, ввиду его сложности, однако уже в сейчас освоена печать ткани печени из  гепатоцитов, звездчатых клеток и клеток эпителия. Успех этот датирован 2013 годом, так что вполне возможен научный прорыв до «распечатки» целой печени уже в ближайшее время.

 

 

Нос

Корейские врачи и исследователи успешно восстановили искусственный нос, сделанный на 3D принтере шестилетнему мальчику. Нерха, мальчик из Монголии, родился без носа и ноздрей, что крайне редко встречается. Младенцы, родившиеся без носа, могут дышать должным образом, и большинство из них умирает в течение 12 месяцев. Врачи из Сеула, куда родители привезли мальчика, создали структуру поддержки для дыхательных путей, используя технологию 3д печати. В серии операций врачи восстановили нос Нерхи. Ноздри пациента были созданы с помощью его же костной ткани. Теперь он может нормально дышать и выглядит гораздо лучше.

 

 

«Печать» человеческих органов на 3D-принтере

Подписывайтесь на Квибл в Viber и Telegram, чтобы быть в курсе самых интересных событий.

quibbll.com

Дружеская 3D печать на заказ

1 СПОСОБ
Нажать “Войти” и войти через ВКонтакте

Заполнить информацию

В верхнем правом углу сайта выбрать Location

Найти на карте свой город, тыкнуть маркер в нужную точку и нажать Save. В крупных городах указывайте на станцию метро, если не хотите указывать  прямой адрес!

2 СПОСОБ (временно не работает)
Нажать “регистрация”
Заполнить поля (правые поля можно заполнить позже)

Дождаться письма на почту, активировать свою учётную запись, перейдя по ссылке

Нажать “Активировать”

Далее перейти в Location и настроить всё как в первом способе.

alexgyver.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *